Chapter 13: DNA Structure & Function

Structure of the Hereditary Material

- Experiments in the 1950s showed that DNA is the hereditary material
- Scientists raced to determine the structure of DNA
- 1953 Watson and Crick proposed that DNA is a double helix

Griffith Discovers Transformation

- 1928
- Attempting to develop a vaccine
- Isolated two strains of *Streptococcus* pneumoniae
 - Rough strain was harmless
 - Smooth strain was pathogenic

Mice live. No live R cells in their blood.

Mice injected with live cells of killer strain S.

Mice die. Live S cells in their blood.

Mice injected with heat-killed S cells.

Mice live. No live S cells in their blood.

Mice injected with live R cells plus heat-killed S cells.

Mice die. Live S cells in their blood.

Transformation

- What happened in the fourth experiment?
- The harmless R cells had been transformed by material from the dead S cells
- Descendents of the transformed cells were also pathogenic

Mice injected with live R cells plus heat-killed S cells. Mice die. Live S cells in their blood.

Oswald & Avery

- What is the transforming material?
- Cell extracts treated with protein-digesting enzymes could still transform bacteria
- Cell extracts treated with DNA-digesting enzymes lost their transforming ability
- Concluded that DNA, not protein, transforms bacteria

Bacteriophages

- Viruses are NOT
 living, they do not
 satisfy all the
 characteristics of life.
- Viruses that infect bacteria
- Consist of protein coat and DNA

Hershey & Chase's Experiments

- Created labeled bacteriophages
 - Radioactive sulfur
 - Radioactive phosphorus
- Allowed labeled viruses to infect bacteria
- Asked: Where are the radioactive labels after infection?

Hershey and Chase Results

virus particle
labeled with ³²P

DNA (*blue*)
being injected into bacterium

35P remains inside cells

@ 2006 Brooks/Cole - Thomson

Structure of Nucleotides in DNA

- Remember WAAAAY back from Ch 2 that nucleotides are the building blocks of nucleic acids
- Each nucleotide consists of
 - Sugar
 - Phosphate group
 - Base
- Four bases of DNA
 - Adenine, Guanine, Thymine, Cytosine

Nucleotide Bases

Nucleotide Bases

Fig. 13-5, p.210

Watson-Crick Model

- DNA consists of two nucleotide strands
- Strands run in opposite directions
- Strands are held together by hydrogen bonds between bases
- A binds with T and C with G
- Molecule is a double helix

DNA Structure Helps Explain How It Duplicates

- DNA is two nucleotide strands held together by hydrogen bonds
- Hydrogen bonds between two strands are easily broken
- Each single strand can serve as template for a new strand

DNA Replication

- Each parent strand remains intact
- Every DNA molecule is half "old" and half "new"

Fig. 13-7, p.212

Base Pairing during Replication

© 2006 Brooks/Cole - Thomson Fig. 13-8a, p.213

Enzymes in Replication

- Enzymes unwind the two strands
- DNA polymerase attaches complementary nucleotides
- DNA ligase fills in gaps
- Enzymes wind two strands together

- http://highered.mcgrawhill.com/sites/dl/free/0072437316/120076/bi o23.swf
- http://highered.mcgrawhill.com/olcweb/cgi/pluginpop.cgi?it=swf::535 ::535::/sites/dl/free/0072437316/120076/mic ro04.swf::DNA%20Replication%20Fork
- http://www.mcb.harvard.edu/losick/images/t rombonefinald.swf

Enzymes in Replication

Table 13.1 Three of the Enzymes With Roles in DNA Replication and Repair

Helicases

Catalyze the breaking of hydrogen bonds between base pairs in the DNA molecule, which unzips in two directions from double-stranded to single-stranded form. Protein factors work with helicases to keep the two parent strands unwound. The helicases are ATP-driven motors, similar to ATP synthases.

DNA polymerases

Catalyze the additions of free nucleotides to each new strand of deoxyribonucleases on a parent DNA template. Also proofread; some DNA polymerases can reverse direction by one base pair and correct mismatches, which occur once in every thousand or so additions.

DNA ligases

Catalyze the sealing-together of short stretches of new nucleotides, which are assembled discontinuously on one of the parent DNA strands. Also can seal strand breaks.

A Closer Look at Strand Assembly

Energy for strand assembly is provided by removal of two phosphate groups from free nucleotides

Continuous and Discontinuous Assembly

Strands can only be assembled in the 5' to 3' direction

Continuous and Discontinuous Assembly

As Reiji Okazaki discovered, strand assembly is *continuous* on just one parent strand. This is because DNA synthesis occurs only in the 5´ to 3´ direction. On the other strand, assembly is *discontinuous*: short, separate stretches of nucleotides are added to the template, and then enzymes fill in the gaps between them.

Fig. 13-8b, p.213

DNA Repair

- Mistakes can occur during replication
- DNA polymerase can read correct sequence from complementary strand and, together with DNA ligase, can repair mistakes in incorrect strand

Cloning

- Making a genetically identical copy of an individual
- Researchers have been creating clones for decades
- These clones were created by embryo splitting

Cloning

1 A microneedle

2 The microneedle has emptied the sheep egg of its own nucleus.

3 DNA from a donor cell is about to be deposited in the enucleated egg.

the first cloned sheep

Cloning vs. Sexual Reproduction

